
Geotechnical Engineering Modelling Software (GEMS)

Beam Foundation Analysis

GEMS Overview

Geotechnical Engineering Modelling Software (GEMS) develops advanced and intuitive Computer Aided Design & Engineering (CAD & E) software for foundation analysis & design.

Our software is designed to streamline the complex process of geotechnical engineering, enabling engineers to work more efficiently and effectively. GEMS foundation analysis suite employs modern finite element modelling techniques for analysis & design of shallow and deep foundations. The foundation analysis suite includes modules for

- Beam foundations
- Comprehensive Pile Foundation Analysis (Land, Bridge & Waterfront Structures)
- Offshore pile foundations

- Raft foundations
- Pile Group Settlement Analysis

GEMS foundation analysis suite is available for download on Windows, MacOS based computers. It is also available on the cloud (for use online using a browser).

Beam Foundations

This type of foundation is adopted in the case of combined footing supporting two or more columns. The combined footing is modelled structurally as a beam foundation resting on the soil. The sub soil may be modelled in several ways. Two common models for the subsoil are:

- (a) **Discrete spring bed model** using modulus of subgrade reaction (also known as "beams on elastic foundation" or "Winkler beam theory"). The soil parameter used for this analysis is the modulus of subgrade reaction.
- (b) **Elastic half–space model** where the subsoil model is replaced by elastic, homogeneous, isotropic semi-infinite continuum. The soil parameters used are elastic modulus and Poisson ratio.

The "Beam Foundations" software consists of two modules incorporating the above two commonly used models of analysis.

Subgrade reaction theory based on discrete spring model

The analysis of the foundation beam is based on the solution of the differential equation

$$EI\frac{d^4y}{dx^4} = -ky$$

where $k = k_s \times B$, EI = Flexural rigidity of foundation beam, $k_s = Modulus$ of subgrade reaction, B = width of foundation beam

The foundation base is assumed to be smooth and the soil pressure is assumed uniform across the width. The solution of this differential equation is complicated and cumbersome except for very simple problems. For practical problems where the loads are in the form of several concentrated loads, moments and UD loads it becomes necessary to resort to numerical solutions.

The software module uses finite element solution of the problem using the exact displacement function and therefore gives exact solution to the problem.

Elastic half-space model

In this approach the subsoil is modelled by a homogeneous, isotropic elastic half-space characterised by an elastic modulus and a Poisson ratio. This model has the merit of accounting for the continuous nature of the soil medium. The discrete spring bed model does not account for the soil continuity. The solution is based on the vertical displacement due to a distributed surface loading on an elastic half-space (given by "Boussinesq"). Again numerical solution of the problem is essential for tackling practical problems as no analytical solution is available for finite beams. The software module for Elastic half-space model is based on finite element formulation assuming a smooth base and uniform soil pressure across the width.

Results of analyses of both the models complement each other in practical design.

Key Features

- One click computation and analysis for all load cases and models.
- Analysis of the beam foundation using both/either models.
- Multiple load cases could be considered.
- Graphical representation of the Plan and Elevation View of the beam foundation.
- Graphical representation of loading diagrams for each load case.
- Data can be input in either SI units or 'Commonly used American units' (kips for force and foot for length).
- Supported on Windows, Mac and Cloud

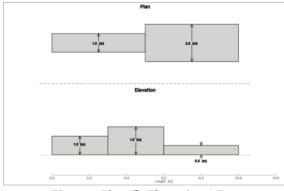
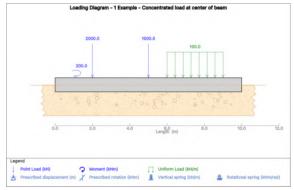
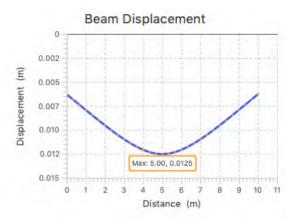


Figure: Plan & Elevation View

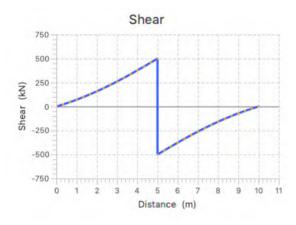
- Export results to MS Word, Excel PDF
- The loading may consist of several concentrated loads & moments
- Multiple uniformly distributed loads can be specified.
- Self-weight may be included if required.
- Different depths and breadths could be given for the beam. RCC inverted T beam sections and RSJ s could be considered by prescribing EI values directly.
- Vertical displacements, rotations, vertical spring & rotational spring could be prescribed if required.

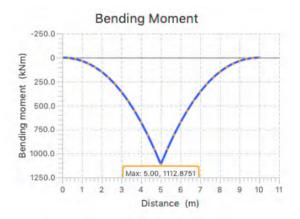


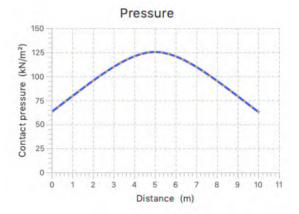

Figure: Loading Diagram

Analysis

Results of analysis for subgrade spring model & elastic half-space model are shown in two separate panes for each of the load cases. The analysis consists of –


			GEI	AS - Beam Fou	ation Analysis - beamf_example3.gem	
File Edit Co	mpute Help					
-					Discrete Spring Bed Analysis	
	Displacement and Slope Table				Beam Displacement	Loadcase
Project Properties	Index	Distance (m)	Displacement (mm)	Slope (rad)	25	Loaocase
and the second	1	0.000	13.3	-0.0017	(in 5.0	Loadcase
3.2	2	0.250	12.9	-0.0017	Ē 5.0	Loadcase
Input Parameters	3	0.500	12.4	-0.0017	7.5	
	4	0.700	12.1	-0.0017	10.0	Loadcase
	5	0.900	11.8	-0.0017		
***	6	1.100	11.4	-0.0016	12.5	
Discrete Spring Bed Analysis	7	1.300	11.1	-0.0015	15.0	
Deu Anaysis	8	1.500	10.9	-0.0013	.0 1 2 3 4 5 6 7 8 9 10 11	
	9	1.700	10.6	-0.0012	Distance (m)	
	10	1.900	10.4	-0.0010		
Elastic Half-space	11	2.100	10.2	-0.0009		
Analysis					Slope	
	Shear, Bending Moment Table				0.0015	
	Node	Distance (m)	Shear (KN)	Bending moment (kNm)	0.0000 10 0.0000 80 0.00000 80 0.00000 80 0.0000 80 0.0000 8	
	1	0.000	0.036	-0.001	8 0.0000	
	2	0.250	92.043	11.922	S -0.0005	
	2	0.250	91.692	11.869	-0.0010	
	3	0.500	181.216	46.411	-0.0015	


Figure: Analysis Pane



Tabulated values of displacements and rotations along the length of the beam, and graphical representations of them.

The Bending moment and shear force values along the beam, and bending moment and shear force diagrams.

Values of soil reaction per unit length of the beam & soil pressure along the beam.

Contact & Enquiries

Geotechnical Engineering Modelling Software (GEMS) LLP

Email: support@gemsoftware.org

Web: www.gemsoftware.org

Phone: +91 89519 79745

Office: Bengaluru, India

Offshore Pile foundation photograph is by Chad Teer and is licensed under Creative Commons Attribution 2.0 Generic license. Beam Foundation photograph is by unknown author. Vashi bridge photograph is by Mr. Pramath and is licensed under CC BY-SA Pile foundation photographs are by Unknown Authors and are licensed under CC BY-SA. Construction building site photograph is by Alex Borland and is released under public domain license.